Performance of optimal registration estimators

نویسندگان

  • Tuan Q. Pham
  • Marijn Bezuijen
  • Lucas J. van Vliet
  • Klamer Schutte
  • Cris L. Luengo Hendriks
چکیده

This paper derives a theoretical limit for image registration and presents an iterative estimator that achieves the limit. The variance of any parametric registration is bounded by the Cramer-Rao bound (CRB). This bound is signal-dependent and is proportional to the variance of input noise. Since most available registration techniques are biased, they are not optimal. The bias, however, can be reduced to practically zero by an iterative gradientbased estimator. In the proximity of a solution, this estimator converges to the CRB with a quadratic rate. Images can be brought close to each other, thus speedup the registration process, by a coarse-to-fine multi-scale registration. The performance of iterative registration is finally shown to significantly increase image resolution from multiple low resolution images under translational motions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

Limiting Properties of Empirical Bayes Estimators in a Two-Factor Experiment under Inverse Gaussian Model

The empirical Bayes estimators of treatment effects in a factorial experiment were derived and their asymptotic properties were explored. It was shown that they were asymptotically optimal and the estimator of the scale parameter had a limiting gamma distribution while the estimators of the factor effects had a limiting multivariate normal distribution. A Bootstrap analysis was performed to ill...

متن کامل

Liu-Type Logistic Estimators with Optimal Shrinkage Parameter

Multicollinearity in logistic regression affects the variance of the maximum likelihood estimator negatively. In this study, Liu-type estimators are used to reduce the variance and overcome the multicollinearity by applying some existing ridge regression estimators to the case of logistic regression model. A Monte Carlo simulation is given to evaluate the performances of these estimators when t...

متن کامل

On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process

We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005